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Abstraet.Twommpletedatasetsofthe dependenceofdielectricpermittivityoo temperature 
and lrequency in the range of IO-' to IO' Hz are reported for K, -,Li.TaO,, x = 0.025 and 
x = 0.033. with twoimpurity-inducedrelavation branchesobservedindetail. It isshown that 
in thex = 0.033 samples, relaxation in the low-frequency branch crosses over from random- 
barrier to hierarchical behaviour as the temperature is lowered. For the first time we fit the 
expressions describing each type of relaxation to both depolarization current and dielectric 
permittivitydata, allowingacrossover temperature to be determined. In addition, a derailed 
study of the high-frequency branch gives new insight into its quite particular behavior, It is 
also shown that within aperimental error, the dielectric properties of the sample do not 
depend on the method of growth. 

1. Introduction 

The mixed-crystal system K1 -xLi,TiO, has been investigated in considerable detail 
(Hochli, Knorr and Loidl 1990). Its characteristics are dipole moments associated 
with Li impurities occupying K sites at random and displaced with respect to the 
centrosymmetric K site by about 1 8, (Van der Klink et ai 1983). Interaction between 
these moments leads to a low-temperature ground state devoid of long-range polar 
order. A combined second-harmonic light generation and birefringence investigation 
revealed a dipolar correlation length of tens of nanometers (Azzini et ai 1991), defined 
asthedistanceatwhich themomentschangefrom +r to -2. Thequadrupolarcorrelation 
length, implying changes from fz to fx or ?y ,  was however of the order of 500 nm 
(Azzini ef ~i 1991, Prater et ai 1981). The question of how such a peculiar cluster 
configuration can form was not addressed. 

Studies of the dynamics of Kr_,LixTaO, showed that the dielectric relaxation is 
highly polydispersive and that the shape of the loss curve is temperature dependent 
(HOchli 1982). At Li concentrations of about 4%, two relaxation branches are present 
and it has been suggested that they belong to z/2 and n flips, i.e. jumps by 90" and 180". 
of Li dipoles between equivalent [lo01 displacements (Hochli and Baeriswyl 1984). 
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These branches have been named quadrupolar and dipolar relaxation, where dipolar 
refers to impurity motion without a change in the electric quadrupolar moment (i.e. n 
flips), while in quadrupolar relaxation both dipolar and quadrupolar moments change. 
The distinction between n/2 and n flips is afforded by measurements of the elastic (or 
quadrupolar) susceptibility on the samesample (Doussineau et a! 1991, Hochli eta1 1991). 
The important questionofwhether one isdealingwith parallelrelaxation (distribution of 
relaxation times) or series relaxation (hierarchical dynamics) has not yet been answered 
conclusively. In fact, it is necessary to fit model predictions for each type of relaxation 
to data over a very large temperature and frequency range, and to compare the quality 
of the fits at each temperature. This requires detailed knowledge regarding dielectric 
properties and a certain computational effort. We thus wish to present the two most 
complete data sets extending from to 10’ Hz and from 30 to 180 K on two samples 
in which both n/2 and n relaxation branches are observed. This is the case for x = 0.03. 
Since this concentration range is narrow and observations critically depend on it, we will 
also report test measurements on control samples grown by different methods. The 
purpose is to evaluate the resultsin termsof model expressionsproposed quite generally 
for dielectric relaxation and to relate the parameters describing these expressions to 
microscopic models of relaxation mechanisms. 

2. Mathematical preliminary 

In this section we give short definitions of the dielectric properties and of the Debye- 
Wagner expression. Since it does not contain new results, it can be skipped by the reader 
familiar with dielectric investigations. We will report on the behavior of the complex 
dielectric constant, or relative dielectric permittivity, E* = E’ - je” as a function of the 
frequency of the applied field. The intensity of the field is kept at sufficiently low values 
so that linearity can be assumed. Under this condition, the negative time derivative of 
the normalized decay function f(t) = -dF/drisgiven as theone-sided Fourier transform, 
or purely imaginary Laplace transform, of the normalized dielectric constant 
( A € ) - ] ( € *  - E=), where AE = ~ ( 0 )  - E,  is the relaxation step. and ~ ( 0 )  and E, are the 
values that E* takes at frequencies much smaller and much larger than the characteristic 
frequency woof the relaxation phenomena (Jonscher 1983). 

If a sample with dimensions surface x thickness = Sd is charged from I = - m to I = 
0 in a constant field E,, then the depolarization current is given by i(f) = 
SE,,E,(E(O) - l)f(t), where E~ = 8.85 pFm-l. This, together with the above consider- 
ations, yields 

i ( f )  = - E u ~ S ~ o ~  ( € * ( U )  - E,)eJw‘dw 

This relates i ( t )  to the imaginary (and reversible) Laplace transform of E * ( @ )  - E,: 
depolarization current measurements thus give the same information as dielectric con- 
stant determination. 

The relation between E‘ - E= and E“ is given by the well-known Kramers-Kronig 
equations. However, only E’ and d‘ are directly accessible experimentally, whereas in 
general E’ - E, is not, since E, must be determined by extrapolation. Therefore, E’ data 
are more difficult to interpret, and we will only present the resultsfor E“. The loss curve 
$‘(In w )  allows the easiest access to qualitative interpretation: it will show a maximum 
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for each relaxation process, the relaxation step is A& = (2/n)J&"(ln w) d In w, and a 
characteristic width at half maximum can be attributed to the curve .$'(In w). 

The Debye (1912) model of independently relaxing dipoles, all having the same 
relaxation time to, predicts this width to be 1.144 decades. Wagner (1913) proposed a 
distribution of relaxation times g(r) to account for larger widths found experimentally, 
by writing the dielectric permittivity of a composed system as superposition of the 
individual Debye responses. This alsoleads tonon-exponentialdecay of the polarization 
f ( t ) ,  where f ( r )  is proportional to the decay function F(t) ,  and 

1 - f(r) d t  = F(t) = g(r)e-'/' d t .  (2) I,' 0 

The last term of this equation becomes a Laplace transform for s = l/r: F(t)  = 
Jexp(-st)g(s-')s-2 ds and, therefore, the inverse Laplace transform of the decay func- 
tion F(t)  gives r2g(r),  but numerical calculation of this inverse Laplace transform is an 
unstable process (Bellmann et a1 1966). 

Given a distribution of relaxation times, one can also quite easily compute the 
correspondingpermittivity (A&)-'(&*(@) - E,) = Jg(r)(l + jwr)-'dr, but once again 
the inverse is difficult to calculate numerically (Colonomos and Gordon 1979). In terms 
of these mathematical transforms, however, a distributiong(r) can always be associated 
with a decay current i(t) and identically with a loss curve .$'(ln w). Wagner (1913) has 
chosen this distribution to be log-Gaussian, defining what we refer to as the Debye- 
Wagner permittivity, cDW. The three parameters to be determine are the relaxation step, 
A&, the centre frequency, w o  and the width of the Gaussian distribution, A. These 
parameters are obtained by fits minimizing x 2  = ~ [ ( E , , , , , , , ~  - E ~ ~ ~ ~ ~ ~ ~ ~ ) ~ ]  and using a 
Marquardt algorithm (Press et a1 1986). If fits of .sDW represent the data reasonably well, 
then this function can be used to obtain a quantitative description in terms of the fit 
parameters. This will be done for most of the dielectric spectra presented here. 

3. Experiment 

3.1. Samples 

Four different samples were investigated. Ths first two samples, &.967Liu.033Ta01 and 
&.9MLio.m4Ta03 have both been grown by the spontaneous nucleation technique (Van 
der Klink and Rytz 1982), with the only difference being that an accelerated crucible 
rotation technique (ACRT) (Elwell and Scheel 1975) was applied for the latter. The 
second pair of samples, Ku.V75Li0.m5Ta03 and Ko.974Li0,u26Ta03 were grown by the Czoch- 
ralski top-seeded solution growth (K,,.975Lio.02sTa03) and the ACRT (K,,.974Lio.o~Ta03) 
methods. We have chosen such sample pairs in order to allow a comparison between 
crystals obtained by different growth techniques. 

The concentrations of the samples were determined by comparing their dielectric 
propertiestothoseofstandardsamples, the concentrationofwhich had been determined 
by nuclear magnetic resonance (Van der Klink and Rytz, 1982). 

The samples were cut'from monocrystals with faces along the (100) directions, and 
gold electrodes were evaporated onto the polished surfaces. Sample size was determined 
by the following twoconsiderations: first, large sample capacitance yields a bettersignal- 
to-noise ratio; second, the sample has to be kept sufficiently small in order to assure 
compositional homogeneity. Furthermore, Maglione (1987) has shown that resonances 
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Figure 1. Imaginary part of the dielectric permittivity t-"U. T )  for t&,sLiOm,TaO,. LF 
and HF labels stand for low-frequency and high-frequency branches. respectively. The 
representation of the U branch also contains curves obtained by using the Gaussian fit. 
paramelersoftheocdatainfigure?. Othercurvesin theLFbrancharealso BtstoaGaussian 
distribution. whereas fits for the HF branch are to a double distribution as described in the 
text. Broken curves are not experimental results but interpolations to guide the eye. 

can occur due to standing electromagnetic waves in this material, which has a large 
refractive index because of the high value of E' - IO3. To avoid resonances in the 
accessible frequency range, sample dimensions of the order of 1 mm x 1 mm x 1 mm 
have been used from 1 MHz to 1 GHz. whereas samples of approximately 
1 mm X 3 mm X 3 mmwereemployedatlowerfrequencies.1nviewofthehighdielectric 
constant of the material, stray fields are not a problem even with this apparently 
unfavourable geometry. 

3.2. Apparatus 
The dielectricpermittivitywas measured using conventional bridge (GR1616 and Boon- 
ton 75A) and impedance analyzer (hp4191) techniques in the corresponding frequency 
ranges (10 to 5 x 10' Hz and lob to lo9 Hz, respectively). Depolarization current (DC) 
data were taken with a Keithly 642 electrometer after charging the sample in a constant 
field of 10 kV/m for 5 to 10 times as long as the actual measurement time. Temperature 
was stabilized to 20.1 K during the entire experiment. This setup, using a home- 
manufactured He-flux cryostat, allows measurement times of 3000 s to be achieved 
routinely. We therefore cover an actual corresponding frequency range of 12 decades 
from 1 mHz to 1 GHz. 

4. Experimental results and evaluation of data 

Figure 1 shows a typical €"(log w ,  T )  graph for the spontaneous-nucleation grown 
l&67Lio,033Ta03 sample. We also show the calculated €"(log w) cuwes that correspond 
to the parameters obtained by fitting a Gaussian distribution of relaxation times to the 
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Figure 2. Depolarizstion currenl me3surements (full  cunes) for four tempenlures and 
smple  K, ,-Li ,JaT30i. The par3meterroflhr htsto aGaussi~ndis~riburion(brokencurve) 
ucre used lo complele figLre I at the lourst frequencies AI= rhoun arc fits lo the KUW 

function (dotted t u n e :  largel) cotered b) the full cunc)  as descrioed in rhc text. 

5 r  

0 50 i50 200 
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- 

Figure 3. Relaxation step AE as obtained from fits to a Gaussian distribution of relaxation 
times. Results for LF (I) and HFI (/j (see text) branches of the samples &,,LiOol,TaO, (0) 
and &s,5Li,,5Ta03 (0) are shown. Also shown are isolated data points for the samples 
K,,,Lio,Ta03 ( A )  (at 60 K) and &V,aLiom6Ta0, (*) (at 50 and 55 Kj, which allows the 
samples obtained by different growth methods to be compared. Curves are best fits of 
AE cc (T - To)Y. 

DC data in figure 2. Debye relaxation has also been observed at 45 K and 10* Hz (Hochli 
and Maglione 1989) independently of the concentration and is not shown on figure 1. In 
this figure, we note two distinct relaxation branches that we call LF and w for the one 
appearing at lower and the other at higher frequencies at a given temperature. 

The parameters of the Debye-Wagner permittivity for the LF branch are shown in 
figures 3 to 5. It is seen that the logarithm of the centre frequency is nearly linear in 1/T 
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Figure 4. Logarithm of the inverse of the most probable relaxation time as obtained by fits 
to eDW. as a function of inverse temperature. Results for LF (I), HFl (hand Hm (S) branches 
of the samples &.a,&auTaO, (0) and %m4LioolsTa0, (0) are shown. Straight lines 
are the linear regressions defining the Arrhenius parameters in table 1. The chain curve 
corresponds to &.wiLiouliTaOl and the broken curve to Ko.msLiy,or;TaOt. Also shown are 
isolated data points for the samples 16.9aaLiy.014Ta0, (A)  and &.nn*LiooxTaOl (e), which 
allows thedifferent growth methods10 be compared.  datapo point sf or &.p,5LiomTaOtare 
shown in the inset because of overlap with K,,.~,L~,~,,TaO; data. 

50 100 150 200 ~ 6 ~ ' ' " ' ' " 1 ' ~ ' " ~ ~ ~ "  T tK1 

Figure 5. Width A of the Gaussian relaxation time distribution for the LF (I) and HFI (/) 
branches for the samples &,p67Lio.m,TaO; (0) and Ib,w5Lio,mTa0, (0). Also shown are 
isolated data poinu, for the samples &.pmLiowTaO; (A) and &,.aLin,o~TaOl (*), which 
allows the comparison of different growth methods. Curves are guides IO the eye. 

(figure 4), and that both the relaxation step (figure 3) and the spread of the relaxation 
times (figure 5) increase monotonically with decreasing temperature. 

Close inspection of the HF data shows that this dispersion curve exhibits a more 
complexstructure than the~Fbranch.FitstoE,,(andtoE~~~asdescribedlater), shown 
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Rgure 6. (a)  Comparison of fits for the HF branch in the sample &,,4Li,,,6Ta0, at 50 K.  
The broken curve is the best f i t  of sKWW and the dotted curve is the fit of to E" data. 
The full curve is h e  best fit of a distribution of logarithmic relaxation times given by a 
superposition of two Gaussian curves. (b) These two Gaussian curves are plotted against 
log(l/r) (dottedcurves),togetherwiththe resultingdistributiong(log(l/r)) (brokencurve). 

in figure 6 for the sample &.974Lio.02aTa03, are very unsatisfactory. In fact, these fits 
lead to variances that are much larger than the ones obtained from comparable data of 
the LF branch and the resulting parameters were devoid of any systematic temperature 
dependence. To improve the quality of the fits we used a superposition of two Gaussian 
curves, i.e. we suppose that the observed curve is the superposition of two different 
relaxation processes that we name HFI and HF2, where HFI is the dominant process. The 
resulting6-parameter function fits the data with excellent accuracy and yields parameters 
with systematic temperature dependence. The corresponding distribution of relaxation 
times is also shown in figure 6 and it is seen that the separation of the two Gaussian 
curves is clearer in this representation than in the &"(In w )  curves. We observe that this 
doublingis present in all samples, independent of growth method. 

Figure 3 shows the relaxation strength for the two samples K,,967Lia,a33Ta03 and 
&.,75Lio,o,Ta03 and for the HFI and LF branches as a function of temperature. In all 
cases, AF grows more rapidly than T' when T is lowered: in fact, the expression 
(T- TJY can be fitted to the values of AF with y > 2 and To > 0. The two relaxation 
branches have comparable strength in &,967Lio,033Ta03 whereas in &.97sLio,u25Ta03 the 
high-frequency response is much stronger than the low-frequency one, which appears 



8394 H-M Christen et a1 

Table 1. 

Concentration x LF HFI H R  

Energy barrier ( E , [ K ] )  
~ ~~ . . I,,, -~ ~ ~~~~~~~~~~ 

2.5% 2550275 1000250 1 W o k M  
3.3% 2650 e 15 1300 3- 50 1wO k 50 

Logarithm of attempt frequency (logl0[~,,/Hz]) 
2.5% 13.6e0.5 12.1 k0.5 11.3t0.5 
3.3% 14.0 3 0.5 13.1 k 0.5 12.1 -C 0.5 

to vanish for small Li concentrations (Hochli and Baeriswyl 1984). The fact that both 
branches are about equally strong in &.,,Lb,m3Ta03 allows~their parameters to be 
evaluated with good and equal precision. For the control samples grown with a different 
method, they are practically identical. 

The HF and LF branches are separated by several orders of magnitude in frequency 
at all temperatures: figure 4 shows In(l/ro) against T '  for ~ , ~ 7 L i o . w 3 T a 0 3 .  
~.,5Lio.025Ta03and,at sometemperatures,forthecontrolsamples,againwith identical 
results. Obviously the centre frequencies of the high-frequency branches decrease with 
increasing concentrations, whereas for the low-frequency branch the centre frequency 
is independent of x .  For all branches, l/ro is nearly exponential in T', such that 
Arrhenius parameters Eb/kB and YO, defined by ro = (22v0)- '  exp(Eb/kBT), can be 
determined. They are given in table 1. The width A of the distributiong(1n r )  is shown 
in figure 5: it exhibits a strong increase with decreasing temperature. 

5. Models of dielectric relaxation 

The time-honoured Debye (1912) model implies that N dipoles p may occupy ener- 
getically equivalent sites, that they oscillate at a frequency y o  around one position and 
that once every period r they hop to their neighbouring site. Here T = (2xvo)-' exo(Eb/ 
kJ), where Eb is the barrier between the two sites. The predictions of this model are 
exponential decay of the polarization and of the decay current i(t). The susceptibility is 
given by Ae/(l + jwr) ,  where A& = Np2/3kBT. The two parameters A& and 5 are 
usually determined with least-square fits or from Cole-Cole plots (Coelho 1979). As a 
considerable amount of work has been done on the limiting behaviour of dielectric 
permittivities, we wish to mention that the Debye expression for very low and very high 
frequencies is characterized by its 'limits' 

[a ,  b] = lim (a In &"/a In w ) ,  lim ( a  In ?/a In w )  = [l, -11. (3) Lo w-* I 
Typical loss peaks in solids are broader than the Debye expression with a FWHM of 

1.14 decades (Coehlo 1979). In order to fit the dielectric data, numerous generalized 
dielectric response or decay functions have been proposed, and most of them include 
the Debye expression as a special case. While some properties of different response 
functions have been studied previously (e.g. Lindsey and Patterson 1980) and limiting 
behaviour of the dielectric permittivity has been compared for the most frequently used 
functions (Hill and Jonscher 1983). the properties of the decay current have attracted 
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less attention. In the following overview of some expressions used to describe dielectric 
data, we thus wish to include the limiting behaviour of the decay current: 

(J In i(r)/J In t ) ,  lim (a In t( t) /a lin I ) ] .  
,-I 

(4) 

At the same time, we must stress that such limits can only be found experimentally 
through extrapolation, using data points at frequencies far from the centre of the loss 
peak. However, such data are often obtained with relatively poor precision. Moreover, 
different functions can lead to the same limiting behaviour, which is a clear indication 
that the shape of the loss curve around its centre frequency must be considered when 
testing different model predictions on experimental data. 

In order to choose appropriate models, we will first focus on the two generalizations 
of the Debye expression for which a physical model related to our system has been 
proposed, namely a distribution of relaxation times and the Kohlrausch (‘stretched 
exponential’) decay, and then, for the sake of completeness, summarize properties of 
some other expressions. 

The approach involving a distribution of relaxation times supposes that each relax- 
ation time t appears with a probability ofg(r) dr.  This implies that each process occurs 
at a different rate and independently of all others. It is then natural to relate g(t) to a 
distribution of energy barriers. Symmetric distributions g(Eb - ,Ebo), centred at EbO, of 
barriers in the Debye model give rise to log-symmetric distributions g(ln[r/ro]) and 
log-symmetric susceptibilities <(In w t o ) .  In this distribution approach, the dielectric 
response function is calculated as a superposition of Debye relaxation phenomena. 
From a physics point of view, thisonly makes sense in the limit of weak interactions or 
for isolated dipoles. In all other cases, this parametrization in terms of a relaxation time 
distribution is simply a mathematical tool to extract some characteristics from the data, 
as was done in the previous section. Various distributions have been proposed, but only 
for the Gaussian argument In(t/to) and width A (Wagner, 1913) are we aware of 
corresponding microscopic models. Most recently, Grannan et a1 (1990) obtained this 
distribution by Monte Carlo simulation for a model where elastic dipoles are randomly 
distributed in an elastic continuum. Neither the dielectric permittivity nor the decay 
current are known analytically. It can be shown, however, that the limiting behaviour 
of both the decay current and the permittivity are the same as that for a simple Debye 
process. Strictly speaking, since the minimum energy barrier is 0, any relation time 
distribution must be truncated such that g(r) = 0 for t v o  C 1. This introduces some 
asymmetry in the case of a Gaussian distribution having a width A comparable to Ebu/ 
k,T. We believe that in the case A < Ebo/kBT, a Gaussian distribution seems to be a 
reasonable first assumption if random phenomena are considered. This does not hold 
for A > E,/kBT, i.e. where a truncation may lead to a significantly different result. We 
cannot, at this moment, imagine a physical model that would lead to a truncated 
distribution, although Macdonald (1987) has used it successfully to fit data from Birge 
eta1 (1984) for KBr: KCN. 

Decay currents in conflict with exponential behaviour have often been expressed 
by the Kohlrausch (1847 and 1854) (‘stretched exponential’) function F(1) = 
Q0 exp[-(at)q. The corresponding &(CO), calculated for the first time by Williams and 
Watts (1970) (for p = 0.5) and therefore called E ~ ~ ~ ,  is given for general values of ,6 
(0 < fi  s l), by a series expansion (Williams et a1 1971). It is found that 

lim (J In i /J In 1). lim (3 In i/J In t )  
L O  r- = 



8396 H - M  Christen et a1 

and that 

[ iim (a In €''/a In w), lim (a  In di/a  no)] = [I, -PI. 
0- 0 e,-+= 

Several microscopic models have led to stretched exponential decay (Rajagopal el a1 
1984, Shlesinger and Montroll 1984, de la Fuente et a1 1988) for certain classes of 
materials. The one that best applies to our system seems to be the approach of Palmer 
et a1 (1984). Here hierarchically constrained dynamics lead to series relaxation rather 
than parallel processes. Related models have been proposed following Palmer et al: 
Kumar and Shenoy (1986) show that hierarchical barriers as well as hierarchical con- 
straints lead to this behaviour, and that these approaches are closely connected. Ultra- 
metricity is introduced by energy barriers separating degenerate states in the Ogielski 
and Stein (1985) approach. In this system, the general exact solution for the dynamics 
is given and can lead to a KWW law with temperature-dependent p for one possible 
choice of these barriers. Finally it has been shown that the dynamics in ultrametric and 
hierarchical spaces are equivalent. even if the underlyingcouplingschemesare different 
(Knapp 1988). 

Monte Carlo simulation of a simple king (+1) spin glass with nearest-neighbour 
interactions leads to non-exponential decay that is best described by f(t) = 
~ ( t / z ) - ~  exp[-(t/r)a], thusanadditional parameter is introduced togeneralize the KFYW 
law (Ogielski 1985) (see also Binder 1990 for a short introduction to Monte Carlo 
simulation of glassy systems). The limiting behaviour of this decay current is charac- 
terized by { -x .  -m}. It seems, however, that the KWW law describes well the data of 
simulation in more refined models, such as the three-state Potts glass (Wu 1982) if one 
takes the bonds J,. in the Hamiltonian %e = -X~i,,lJji6sisi to be a random variable with 
P(J,i) = exp[-Ji/2(AJ)'] (Carmesin and Binder 1988). or such as the isotropic 
Edward+Anderson model, where the Hamiltonian is given by % e =  - 
X c i , , ~ J j i [ ( ~ , = , s ~ ~ ~ ) *  - $1, again with Gaussian random bondsJo and where &isthe pth 
component of a 3-component vector (Carmesin and Binder 1987). 

We wish to conclude this section with the description of some other frequently used 
expressions. Obvious mathematical generalizations of the susceptibility are obtained 
by replacing the Debye expression (1  = jwz)-' by (1 - [jwz]"')-", 0 <m, n C 1. The 
generalization n = 1, m variable, is by Cole and Cole (1941) and gives rise to a sus- 
ceptibility .?'(In WT) which is symmetric in the argument and has the limits [+m, -m]. 
The opposite case, m = 1, n variable, proposed by Davidson and Cole (1951) yields 
limits [l, - n ] ,  The double generalization is by Havriliak and Negami (1966). With 
[m,  -m X n ]  as its limits, it quite generally fits the data, which is to be expected in view 
of the larger number of parameters. It is worth noting that the Fourier transform of the 
4-parameter Havriliak-Negami function can be fitted to the 3-parameter stretched 
exponential decay withgood precision provided that theparametersmandnare related 
(Macdonald and Hurt 1986). To our knowledge, analytical expressions of the decay 
current for the case m # 1 exist for only m = 1/2 in terms of parabolic cylinder and error 
functions. For the Cole-Davidson expression, however. the inverse Laplace transform 
is evaluated analytically (Roberts and Kaufman 1966) to yield i(t) = 
Ae eoEo(z"T(n))-' t"-l exp[-t/r], with limits {n - 1, -m}. Note that this function can 
be seen as a special case of the Ogielski (1985) expression, with x = n - 1 and p = 
1. These mathematical generalizations of the Debye expressions are not based on 
microscopic models. 

Another approach leading to non-exponential relaxation has to be mentioned in this 
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Figure 7. (a) Comparison of the variances of fits 
to data for the &,,Liom3Ta03 sample. Points 
above the dotted horizontal line indicate that the 
data are represented better by the KWW function 
than by the one resulting from a log-Gaussian 
distribution of relaxation times. (b)  KWW fit par- 
ameler p for the same sample. p increases mon- 
otonicallv with T. Such behaviour has been 
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context. In their cluster model, Dissado and Hill (1987) find an equation of motion 

d2@(r)/dt2 + t-'(2 + n + w,r)d@(t)/dt + t - * [n  + o,t(l + m)]@(t) = 0 

which has an analytical solution in terms of a Gaussian hypergeometric function for both 
the decay and the dielectric response. Their limits are { -n ,  -(1 + m)} and [m, n - 11, 
which account well for behaviour of a large number of materials. The resulting function 
has one more parameter than the KWW law and it should therefore be expected to fit 
many data sets better. At the same time we must note that this model does not seem to 
allow for temperature dependence of the parameters n and m. This implies that the 
shape of the loss curve does not change with temperature, and in particular that its width 
is constant, contrary to what we observe in Kt-&ixTa03. 

6. Interpretation 

If we select expressions with a microscopic background, the choice is reduced to the 
Kohlrausch (stretched exponential decay function) and the Debye-Wagner (log-Gaus- 
sian superposition of relaxation times) expressions. We fitted both functions to the 
complete data sets over all temperatures attained in the experiment and calculated the 
corresponding minimum xz values for each function as a measure of the quality of the 
fit. For most of the dispersions studied here, the Debye-Wagner function leads to a 
smaller minimum xZ than the Kohlrausch expression does, indicating that the Debye- 
Wagner function describes the data better. However, for the one relaxation phenom- 
enon that can be observed over most of the 12-decade interval, namely the  dispersion 
in the &,p67Lio,o,3Ta03 sample, a crossover from Debye-Wagner to Kohlrausch behav- 
iour is observed as Tdecreases (figure 7). For this sample, the ratio of the minimum x 2  
values rises steadily from 0.3 to 2 as the temperature is lowered from 120 to 50 K, 
indicating a crossover from independent dipole behaviour to hierarchical relaxation 
around T = 65 K. In the temperature interval where the Kohlrausch expression fits the 
data better than or as well as a Gaussian distribution of relaxation times (T s 70 K), the 

parameter decreases with decreasing temperature (figure 76). This is in agreement 
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with Monte Carlo simulations of the Edwards-Anderson model for quadrupolar glasses 
(Carmesin and Binder 1987). 

Turning now to the nature of dipole motion associated with each relaxation branch, 
we first consider the high-frequency relaxation,i.e. flipsbyz/Z. Dielectricdatapublished 
by Van der mink eta[ (1983) for Li concentrations from 1% to 6% show that the motion 
becomes progressively slower as the concentration increases but the energy barrier 
remains close to 1100 K (2200 K) for all concentrations. 

Considering that the barrier corresponding to these xi2 flips is about half that for 
n flips, and taking the probability for a Li ion to jump over a barrier to be r-’ = 
(Znv,) exp[-Eb/kBr], wesee that this probability isordersofmagnitudelargerforEb = 
1100 K than for E,, = 2500 K. Thus we should find that the larger barrier has virtually 
noinfluenceon the relaxation timeofthesystem. Thisholdsifbothpathsforfluctuations 
of moments, by n/2 and by II flips, are open, and is observed in the low-concentration 
limit. In fact, the only relaxation branch observed in these low-concentration samples 
(w s 2%) corresponds to Eb - 1100 K (Hochli and Maglione 1989). 

In some case (figure 6), neither a simple Debye-Wagner nor a Kohlrausch function 
describes the HF-branch data satisfactorily. We relate this observation to a model cal- 
culation by Van Weperen et al(1977). who found that the probability distribution of 
dipoledipole interaction energies for randomly displaced Ce)’ ions in SrF, was not 
Gaussian but had more than one local maximum, Sheng and Chen (1988) studied the 
local-field distribution in random dielectric media as a function of dipole concentration 
and polarizability by generalizing Onsager’s reaction field approach. Their results indi- 
cate that the local-field distribution is generally double-peaked. Also, the separation 
between the two peaks varies linearly as a function of the particle polarizability. which 
explains why this double-peak characteristic is not always observed clearly, the two 
peaks merge at low polarizabilities. The splitting of the field distribution into two local 
maxima is aconsequence of nearest-neighbour interaction (Chen and Sheng 1991). This 
is similar to what one concludes from a generalized random local field theory, which 
considers pair interaction in more detail and where two maxima can also be observed 
(Vugmeister and Stephanovich 1988, Vugmeister and Glinchuk 1990). 

In the present paper, we describe this double-peak characteristic quantitatively by 
fitting a double-Gaussian distribution of relaxation times to the susceptibility data. We 
observe that the relaxation step corresponding to the first Gaussian curve (HFI) is much 
larger than the one for the second (HR). Therefore, we can limit ourselves to the 
discussion of the HFi peak, and deduce a detailed description of the n/2 impurity motion 
from the temperature dependence of characteristic parameters of this peak. 

First consider that the interaction between multipoles grows as the concentration 
increases and as the temperature decreases: this interaction leads to the observed spread 
A of the relaxation times with increasing concentration and decreasing temperature. In 
the context of Chen and Sheng’s study (1991). this can be interpreted as a consequence 
of growing anisotropy, i.e. of local ordering and the formation of coherently moving 
clusters. which have also been observed by Azzini et al (1991). At the same time, the 
relaxation step grows faster than 1jT with decreasing temperature, another indication 
that the multipole movements are correlated, and is larger in higher-concentration 
samples as long as x s 0.04. However, as the critical concentration (x  - 0.04) is 
approached, the multipolar interaction becomes a hindering factor on impurity motion. 
This is clearly observed in our x = 0.033 sample: still considering the WI relaxation 
branch only (Symbol jZf in figure 3), we see that the relaxation step goes through a 
maximum at T * 52 K. while the spread A of the relaxation times exhibits no special 



Random-barrier and hierarchical relaxation in K, -,Li,Ta03 8399 

feature at this temperature. This temperature is sometimes called the freezing tem- 
perature (T,)-a practical but potentially misleading term since motion does not come 
to a half at 52 K, nor does its slowing down deviate from the Arrhenius curves (figure 4). 

How can this particular behaviour at T,-a maximum of AE but no critical slowing 
down-be understood? We suggest that the correlated motion of the impurities takes 
place by changing the polarization of a group of impurities, or a cluster, simultaneously. 
For randomly distributed multipoles, the total interaction energy between all dipoles 
belonging to the same cluster will change, in general, if all moments Rip by n/2. This 
causes these movements to be less likely if interactions are important. One expects 
interaction to he important if the lattice polarization arising from one impurity is 
important at the site of its neighbour. A recent theoretical study based on a nonlinear 
shellmodel(Stachiottieral199l)shows that thispolarizationextendsoverd = 3a, where 
ais thelattice constant, and therefore becomesimportant if the average availablevolume 
perimpurity, l / x ,  becomescomparahle tod3,i.e. ifx = 4%,asfoundin theexperiment. 
Thus for some of the local configurations found in the random distribution of impurities, 
this interaction inhibits Rips by n/2, leading to the decrease of the relaxationstep, while 
motion of other configurations continues to slow down according to an Arrhenius law. 

Flips by narenot subject to the same hinderinginteraction: the quadrupolar moment 
does not change in this motion, nor does the internal energy of a cluster of coherently 
moving dipoles. Therefore jumps over the 2500 K barriers, which would be very rare if 
the much fastern:/2flips (Eb = 1100 K) wereallowed, will beobservedforthoseclusters 
for which n:/Z motion is hindered, i.e. when interactions between multipoles play an 
important role. This is observed in &.,6,L~.033Ta0,, where the relaxation strength of 
then: branch (symbol ,$ in figure 4) becomes stronger than the one corresponding to 4 
2 motion (symbol 0) below a certain temperature. While interaction between dipoles 
belonging to the same cluster does not change if the polarization of the configuration is 
invertedanddoesnot hinder thiszmotion, interactions with neighhouringclusters will. 
This allows us to model a whole cluster as one multipole, as is sometimes done in spin 
glasses (Binder and Young 1986). Interaction between these (cluster) multipoles leads 
to the observed distribution of relaxation times at intermediate temperatures, whereas 
for higher temperatures (and therefore for smaller interactions) the motion isquite close 
to beingmonodispersive. At even lower temperatures, however, the motioncrossesover 
from Debye-Wagner to Kohlrausch-type behaviour. We postulate that flips by n: are 
only possible, at low temperatures, if the surrounding configuration is favourable, thus 
leading to hierarchically constrained motion. This corresponds exactly to the model by 
Palmer et a1 (1984). where cluster A cannot move until cluster B moves out of the way, 
and therefore a hierarchy of degrees of freedom from fast to slow is established. In this 
model, the levels n = 0 (fastest), 1, 2, . . . are represented by N, pseudospins, and 
level n + 1 can change only if pfl pseudospins at level n attain one particular state. By 
postulating p. = p$-P with p = 1 + E,  and N ,  + , = N,/h, h < 1, one obtains 
Kohlrausch-type behaviour for E Q 1 and a stretching variable given by p = 
(1 + poln 2)-*.Thisrelatesp-'linearlyto thenumberofpseudospinsatleveln thatneed 
to be in one particular state in order to allow the pseudospins at level n + 1 to Rip, and 
this number is expected to grow as temperature decreases. The consequence that p is an 
increasing function of the temperature is well observed experimentally (figure 7(b) ) .  

7. Conclusion 

Two relaxation branches are revealed in KI_,Li,Ta03: one based on z/2 motion, the 
other on n: motion of the dipoles. The n /2  (HF) branch is dominant a t  low concentration 
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and the R (LF) branch dominates at high Li concentrations. At an intermediate con- 
centration of 3.3% both branchesarepresent and theircharacteristicsallow us todeduce 
that: 

(i) Then/Z(HF)motionisrelated tobarriersof-1000 K.Theinteractionofdisplaced 
Li impurities with the lattice and other impurities grows with increasing concentration 
and decreasing temperature. This leads to a spread of the energy barriers, and to the 
formation of coherently movingclusters. For relatively weak interaction, the relaxation 
step grows with growing interaction, but when interactions between multipoles belong- 
ing to the same cluster become more important, they hinder this motion and lead to a 
decrease of the HF-branch relaxation step at high concentrations and low temperatures. 

(ii) Impurities for which n/2 flips are restrained by intra-cluster interactions are still 
free to flip by x, even if the corresponding energy barrier is much larger (-2500 K), 
giving rise to the LF relaxation branch. The observed spread of the energy barriers and 
the increase of the relaxation step ismainly due to interaction betweendifferent clusters. 
This cluster-cluster interaction is such that R flips of clusters do not remain independent 
at low temperatures. Here, a hierarchy of levels (from fast to slow) is established, as 
evidenced by Kohlrausch-type relaxation below a crossover temperature of -65 K. 
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